

# SynSpace

Multistep forward synthesis for scaffold hopping and generative design in synthetically feasible chemical space



NIH Virtual Workshop on Reaction Informatics 2021



#### ChemPass

- ChemPass:
  - A platform company service provider in small molecule preclinical space
    - Medicinal chemistry-driven technology development
  - Founded in 2016
- ChemPass platforms
  - Highly validated: >45 lead optimization collaborations to date







End-to-end Al-assisted lead Discovery (AID) platform



## Key considerations impacting preclinical cost and timelines

- Historical lead discovery process at Big Pharma
  - 2.5-4 years, 250-450 FTE months spent
- DMTA cycle time and the # cycles are critical factors



- Synthesis is far the longest and most expensive
  - 0.5 4 months per cycle
  - Data of stragglers miss out on several cycles
  - Mindset problem:
    - Compelling design ideas are hard to dismiss due to perceived synthetic challenges
    - Hard to drop a compound once synthetic effort is underway as there is always "another route"
- Off-the-shelf and virtual commercial catalogs will have <u>little impact after lead finding</u>









#### Where to take a hit?

- A suggested computer-aided lead optimization workflow (doi.org/10.26434/chemrxiv.14153819.v1):
  - Either spending a lot of money in an expensive process to carry compounds that get thrown out by retrosynthesis analysis
  - Or spending a lot of money to run retrosynthesis on 100K-millions of compounds, most of which get thrown out in the docking/FEP stages: perhaps RAscore can help (DOI: 10.1039/d0sc05401a)



In real projects, typically we have a much bigger chemical space: 30-70% of the resources and cost will be wasted



#### A much better process

- What if the entire idea space is synthetically feasible
  - Costly processes are carried out on relevant synthetically feasible chemical space
  - But is the space as good as offered by deep generative design or simple enumeration?



All designed structures are worthy of evaluation: no wasted resources and cost



## In silico synthesis as a design concept

• ChemPass Design Technology: What can be synthesized from starting materials, intermediates or lead structures?

Reduction to amine

- Ring closing (Raney Ni)
- Nonselective (Pd/C)



Reactivity Assessment

Reactivity Assessment

Reactivity Assessment

- Technology development was required to solve
  - Rule-based AI for forward *in silico* synthesis
  - Molecule design based on multistep in silico synthesis
  - Control of combinatorial explosion



#### SynSpace

- Custom ideation in synthetically feasible space
  - >300 transformations in current version



- No need for synthesis knowledge for computation chemists
- No need for cheinformatics knowledge for medicinal chemists





## SynSpace software: synthesizable chemical space explorations

- Design tasks SynSpace modules
  - Library design (e.g. DEL)

REACTION-BASED DESIGN

• Side-chain analog design

STARTING MATERIAL-BASED DESIGN

- Scaffold hopping, scaffold analog design
  - 1-step process: 1-Click design

1-CLICK SCAFFOLD DESIGN

2-step General scaffold design

GENERAL SCAFFOLD DESIGN

**ENHANCED GSD** 

Multi-step and multi-site library enumeration

LIBRARY ENUMERATION

Automated generative module: Derivatization design

DERIVATIZATION DESIGN

Retrosynthesis module

**RETROSYNTHESIS** 

Automated SMBD Generative Design

SMBD GENERATIVE DESIGN



## SynSpace 1-Click scaffold design (forward synth/3D overlap)



- Simple design tool that requires <u>no cheminformatic</u> skill set
- Design outcome influenced by simple user settings:
  - H-bonding features
  - Aromaticity
  - Ring size
- · Intelligent ring closing method included
  - Bicyclic derivatives of monocyclic leads can be easily explored



New scaffolds with properties, synthetic information, novelty assessment



### Two proprietary generative design tools

• 2 different user-friendly solutions







### What is Derivatization Design?

A universal generative design technique







- Full and simple control on
  - # variations, type of variations
  - Depth of modification at each site: scaffold hopping and/or variational analogs (exploration or exploitation)
  - Similarity and desired set size
- Simple user inputs drive the <u>fully automated</u> process

All designed molecules possess vital synthesis, reagent and vendor data

ACS Med. Chem. Lett. 2021, 12, 185-194.



### Derivatization design example

| Setting                                      | Value |
|----------------------------------------------|-------|
| Max_number_of_variations_with_same_linkage   | 1     |
| Max_number_of_variations_with_varied_linkage | 1     |
| Max_number_of_total_modifications            | 1     |



Similarity\_step\_0

Step 5

Similarity\_threshold 0.7

Similarity\_threshold 0.7

Similarity\_step\_5 0.9

ACS Med. Chem. Lett. 2021, 12, 185-194.



## Design results – with settings focused on the scaffold



Site specific variations:

Step 0 Step 1

22 (0.4%)



Similarity threshold 0.7

1,876 (36%)



Similarity threshold 0.7

3,007 (57%)

Step 4

Similarity step 0 0.9

30 (0.6%)

273 (6%)

Step 5

#### Positional (or reaction step) contribution to the total result set depends on:

- Reagent (positional) similarity range set by user primary driver
- Commercial (or custom uploaded) reagent diversity
- Reaction type bimolecular adds much more than monomolecular





# Example products



5,214 products

Step 0

Step 1

Step 5



# Design results – with equal similarity at each position



Similarity\_threshold 0.7 1 9,264 products

Step 0

Step 1



Step 3

Step 5

Site specific variations:

1,511 (16%)

2,564 (28%)

3,231 (35%)

30 (0.3%)

Step 4

1928 (21%)

<u>Positional (or reaction step) contribution to the total result set</u> becomes well distributed





## DDR1 case study: comparison of ChemPass Derivatization design (DD) to deep generative design by GAN (GD)

| lap Indication (DD vs GD)                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------|
| DD can be deployed in both early and later stages of a project, GD unlikely to have enough training data at early stages |
| Comparable set size: <5% difference                                                                                      |
| DD samples relevant chemical space much more so than GD. GD hit rate very low considering its large training set.        |
| DD optimizes leads, GD does not                                                                                          |
| DD set more populated with strong motifs                                                                                 |
| Both can produce novel motifs for new lead development directions                                                        |
| Many challenging compounds in GD                                                                                         |
|                                                                                                                          |





- Much higher hit rate
- Better docking scores
- More new motifs

ChemPass

- Can be used in early lead optimization
  - Needs no large training set

**Derivatization Design** 

Can start from 1 hit/lead

#### Can effectively

- Optimize a lead, or
- Create new lead classes, or
- Do both at the same time

#### Produces synthetically feasible compounds

85% wet lab success rate for schemes with 3-6 steps

#### DERIVATIZATION DESIGN samples more relevant chemical space for DDR1:



\* Hit rate: % compounds passed cutoff for XP docking after SP run









#### Additional in-house tools in AID Platform

- Active learning (AL), desirability scoring, ML/DL models & automated analysis of docking results
  - AL enhances throughput and speed

Docking of 5-6% of the optimization idea set recovers 70-75% of "actives"



AL selection and desirability scoring outperforms GA
 & medicinal chemists





ML/DL models



PROTEINS: Structure, Function, and Bioinformatics 64:422-435 (2006

Minimizing False Positives in Kinase Virtual Screens

Emanuele Perola\*

Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02:139

Ligand Strain Energy in Large Library Docking

Shuo Gu<sup>1</sup>.†, Matthew S. Smith<sup>1,2</sup>.†, Ying Yang<sup>1</sup>, John J. Irwin<sup>1</sup>, Brian K. Shoichet<sup>1,\*</sup>

- Conformational energy
- H-bonding (present and missing)
- Binding pose classification
- Multiple clash analyses
- Strain energies
- Ligand structural issues



Significant distortion of aromatic planarity

Rapid elimination of decoys: 50-95% of poses get flagged or removed



# Lead generation via scaffold hopping, Derivatization design and docking pose analyses



















Exploration and exploitation in synthetically feasible lead analog space become simple, rapid and cost-effective processes



#### Summary

- *In silico* forward-synthesis technologies and user-friendly solutions have been developed for exploration and exploitation in synthesizable chemical space
- SynSpace users can solve different lead optimization tasks and get actionable results
- Derivatization design is a powerful generative design technique to cover relevant space around leads
- SynSpace forward-synthesis techniques can generate and optimize leads quickly and cost effectively
  - Compatible with wet and virtual cycles
  - Cycle time reduction
  - Cycle count reduction



#### Thank you for your attention!

Contact: Greg Makara

Phone: +36-30-389-9697

Email: gergely.makara@chempassltd.com



ChemPass Ltd.

#### Address

7 Zahony street Budapest, Hungary, ZIP: 1031

#### Phone

+36-30-389-9697



5/19/2021 20